Functional Analysis of the Cathepsin-Like Cysteine Protease Genes in Adult Brugia malayi Using RNA Interference
نویسندگان
چکیده
BACKGROUND Cathepsin-like enzymes have been identified as potential targets for drug or vaccine development in many parasites, as their functions appear to be essential in a variety of important biological processes within the host, such as molting, cuticle remodeling, embryogenesis, feeding and immune evasion. Functional analysis of Caenorhabditis elegans cathepsin L (Ce-cpl-1) and cathepsin Z (Ce-cpz-1) has established that both genes are required for early embryogenesis, with Ce-cpl-1 having a role in regulating in part the processing of yolk proteins. Ce-cpz-1 also has an important role during molting. METHODS AND FINDINGS RNA interference assays have allowed us to verify whether the functions of the orthologous filarial genes in Brugia malayi adult female worms are similar. Treatment of B. malayi adult female worms with Bm-cpl-1, Bm-cpl-5, which belong to group Ia of the filarial cpl gene family, or Bm-cpz-1 dsRNA resulted in decreased numbers of secreted microfilariae in vitro. In addition, analysis of the intrauterine progeny of the Bm-cpl-5 or Bm-cpl Pro dsRNA- and siRNA-treated worms revealed a clear disruption in the process of embryogenesis resulting in structural abnormalities in embryos and a varied differential development of embryonic stages. CONCLUSIONS Our studies suggest that these filarial cathepsin-like cysteine proteases are likely to be functional orthologs of the C. elegans genes. This functional conservation may thus allow for a more thorough investigation of their distinct functions and their development as potential drug targets.
منابع مشابه
Development of an In Vivo RNAi Protocol to Investigate Gene Function in the Filarial Nematode, Brugia malayi
Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remo...
متن کاملBm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing
While interference with the class I MHC pathway by pathogen-encoded gene products, especially those of viruses, has been well documented, few examples of specific interference with the MHC class II pathway have been reported. Potential targets for such interference are the proteases that remove the invariant chain chaperone and generate antigenic peptides. Indeed, recent studies indicate that i...
متن کاملThe development and utilization of an in vivo RNA interference protocol to elucidate gene functions and identify potential drug targets in the filarial nematode Brugia malayi
85 INTRODUCTION 87 MATERIALS AND METHODS 90 Mosquito Maintenance and Injection Protocol 90 Establishing Brugia Infection 90 Gene Selection & dsRNA Generation 91 Relative Quantitative RT-PCR 93 Quantitative RT-qPCR 95 Phenotype Analysis 98 Statistical Analysis 99 RESULTS 100 Target Genes were Expressed During Mosquito Life Cycle Stages 100 In Squito Suppression of Target Genes was Potent and Spe...
متن کاملHeme acquisition in the parasitic filarial nematode Brugia malayi
Nematodes lack a heme biosynthetic pathway and must acquire heme from exogenous sources. Given the indispensable role of heme, this auxotrophy may be exploited to develop drugs that interfere with heme uptake in parasites. Although multiple heme-responsive genes (HRGs) have been characterized within the free-living nematode Caenorhabditis elegans, we have undertaken the first study of heme tran...
متن کاملMining Predicted Essential Genes of Brugia malayi for Nematode Drug Targets
We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Neglected Tropical Diseases
دوره 3 شماره
صفحات -
تاریخ انتشار 2009